Linear Algebra

Linear combinations of matrices

- 1. We have defined each of the following phrases in reference to a set of column vectors in \mathbb{C}^n . For each, formulate a new definition in reference to a set of matrices in M_{mn} .
 - (a) linear combination
 - (b) span
 - (c) relation of linear dependence
 - (d) linearly independent and linearly dependent
- 2. Consider the set

$$S = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 2 \\ 2 & 6 \end{bmatrix}, \begin{bmatrix} 4 & 8 \\ 1 & 2 \end{bmatrix} \right\}$$

in M_{22} . For each of the following, determine if the given matrix is in the span of S or not. If so, express the given matrix as a linear combination of the vectors in S.

(a)
$$\begin{bmatrix} 4 & 7 \\ 0 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} -3 & -1 \\ 8 & 1 \end{bmatrix}$

3. For each of the following, determine if the given set is linearly independent in M_{22} :

(a)
$$S = \left\{ \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 2 \\ 2 & 6 \end{bmatrix}, \begin{bmatrix} 4 & 8 \\ 1 & 2 \end{bmatrix} \right\}$$

(b)
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

- 4. Find a linearly independent spanning set for M_{22} , that is, a linearly independent set S such that $Sp(S) = M_{22}$.
- 5. Define $S_{22} = \{A \in M_{22} | A \text{ is symmetric}\}$. Find a linearly independent spanning set for S_{22} , that is, a linearly independent set S such that $\text{Sp}(S) = S_{22}$.
- 6. Define $U_{22} = \{A \in M_{22} | [A]_{ij} = 0 \text{ if } i > j\}$. Find a linearly independent spanning set for U_{22} , that is, a linearly independent set S such that $\operatorname{Sp}(S) = U_{22}$.
- 7. Define $AS_{22} = \{A \in M_{22} | A^t = -A\}$. Find a linearly independent spanning set for AS_{22} , that is, a linearly independent set S such that $Sp(S) = AS_{22}$.